Construction of a Non-2-colorable k-uniform Hypergraph with Few Edges

نویسنده

  • Heidi Gebauer
چکیده

We show how to construct a non-2-colorable k-uniform hypergraph with (2) edges. By the duality of hypergraphs and monotone CNF-formulas this gives an unsatisfiable monotone k-CNF with (2) clauses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How many random edges make a dense hypergraph non-2-colorable?

We study a model of random uniform hypergraphs, where a random instance is obtained by adding random edges to a large hypergraph of a given density. The research on this model for graphs has been started by Bohman et al. in [7], and continued in [8] and [16]. Here we obtain a tight bound on the number of random edges required to ensure non-2-colorability. We prove that for any k-uniform hypergr...

متن کامل

The Hardness of 3 - Uniform Hypergraph Coloring

We prove that coloring a 3-uniform 2-colorable hypergraph with c colors is NP-hard for any constant c. The best known algorithm [20] colors such a graph using O(n1/5) colors. Our result immediately implies that for any constants k ≥ 3 and c2 > c1 > 1, coloring a k-uniform c1-colorable hypergraph with c2 colors is NP-hard; the case k = 2, however, remains wide open. This is the first hardness re...

متن کامل

Coloring uniform hypergraphs with few edges

A hypergraph is b-simple if no two distinct edges share more than b vertices. Let m(r, t, g) denote the minimum number of edges in an r-uniform non-t-colorable hypergraph of girth at least g. Erdős and Lovász proved that m(r, t, 3) ≥ t 2(r−2) 16r(r − 1)2 and m(r, t, g) ≤ 4 · 20g−1r3g−5t(g−1)(r+1). A result of Szabó improves the lower bound by a factor of r2− for sufficiently large r. We improve...

متن کامل

Conflict-free Colorings of Uniform Hypergraphs with Few Edges

A coloring of the vertices of a hypergraph H is called conflict-free if each edge e of H contains a vertex whose color does not repeat in e. The smallest number of colors required for such a coloring is called the conflict-free chromatic number of H, and is denoted by χCF (H). Pach and Tardos proved that for an (2r − 1)-uniform hypergraph H with m edges, χCF (H) is at most of the order of rm lo...

متن کامل

Coloring uniform hypergraphs with few colors

Let m(r, k) denote the minimum number of edges in an r-uniform hypergraph that is not k-colorable. We give a new lower bound on m(r, k) for fixed k and large r. Namely, we prove that if k 2, then m(r, k) (k)k(r/ln r) . © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 24: 1–10, 2004

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0911.0900  شماره 

صفحات  -

تاریخ انتشار 2009